Method of unconfounding orientation and direction tunings in neuronal response to moving bars and gratings.

نویسنده

  • Jun Zhang
چکیده

When an oriented bar or grating is drifted across the receptive field of a cortical neuron at various orientations, the tuning function reflects both, and thus confounds the orientation (ORI) and the direction-of-motion (DIR) selectivity of the cell. Since ORI (or DIR), by definition, has a period of 180(or 360) deg/cycle, a popular method for separating these two components, due to Wörgötter and Eysel [Biol. Cybern. 57, 349 (1987)], is to Fourier decompose the neuron's response along the angular direction and then identify the first and the second harmonic with DIR and ORI, respectively (the SDO method). Zhang [Biol. Cybern. 63, 135 (1990)] pointed out that this interpretation is misconceived--all odd harmonics (not just the first harmonic) reflect the DIR component, whereas all even harmonics (including the second harmonic) contain contributions from both DIR and ORI. Here, a simplified procedure is proposed to accomplish the goal of unconfounding ORI and DIR. We first construct the sum of all odd harmonics of the overall tuning curve, denoted ODDSUM, by calculating the difference in the neuronal response to opposite drifting directions. Then we construct ODDSUM+/ODDSUM/ and identify it with DIR (here . denotes the absolute value). Subtracting DIR, that is ODDSUM+ /ODDSUM/, from the overall tuning curve gives ORI. Our method ensures that (i) the reconstructed DIR contains only one, positive peak at the preferred direction and can have power in all harmonics, and (ii) the reconstructed ORI has two peaks separated by 180 degrees and has zero power for all odd harmonics. Using this procedure, we have unconfounded orientation and direction components for a considerable sample of macaque striate cortical cells, and compared the results with those obtained using Wörgötter and Eysel's SDO method. We found that whereas the estimate of the peak angle of ORI remains largely unaffected, Wörgötter and Eysel's method considerably overestimated the relative strength of ORI. To conclude, a simple method is provided for appropriately separating the orientation and directional tuning in a neuron's response that is confounded as a result of the use of drifting oriented stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex.

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude o...

متن کامل

Statistical Background Modeling Based on Velocity and Orientation of Moving Objects

Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...

متن کامل

Spatial summation in the receptive fields of simple cells in the cat's striate cortex.

1. We have examined the responses of simple cells in the cat's atriate cortex to visual patterns that were designed to reveal the extent to which these cells may be considered to sum light-evoked influences linearly across their receptive fields. We used one-dimensional luminance-modulated bars and grating as stimuli; their orientation was always the same as the preferred orientation of the neu...

متن کامل

Neural responses to visual texture patterns in middle temporal area of the macaque monkey.

1. We studied how neurons in the middle temporal visual area (MT) of anesthetized macaque monkeys responded to textured and nontextured visual stimuli. Stimuli contained a central rectangular "figure" that was either uniform in luminance or consisted of an array of oriented line segments. The figure moved at constant velocity in one of four orthogonal directions. The region surrounding the figu...

متن کامل

The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.

A plaid pattern is formed when two sinusoidal gratings of different orientations are added together. Previous work has shown that V1 neurons selectively encode the direction and orientation of the component gratings in a moving plaid but not the direction of the plaid itself (Movshon et al. 1985). We recorded the responses of 49 direction-selective neurons to moving gratings and plaid patterns ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2005